Teksvideo. Oke bentuk soal seperti ini diketahui segitiga siku-siku ABC seperti pada gambar berikut yang ditanyakan adalah panjang sisi adalah pakai dari soal ini kita melihat terdapat sebuah segitiga siku-siku yang diketahui adalah yang pertama sudut C yakni 60° Yang kedua kita juga mengetahui bahwa AB panjangnya 9 cmkemudian yang ditanyakan adalah AC pakai dalam trigonometri terdapatBerandaPerhatikan gambar di bawah! Segitiga ABC sik...PertanyaanPerhatikan gambar di bawah! Segitiga ABC siku-siku di C. Jika panjang AC = 8 cm , BC = 6 cm , tentukan perbandingan trigonometri pada sisi-sisi segitiga di atas A. sin α = ...Perhatikan gambar di bawah! Segitiga ABC siku-siku di C. Jika panjang , , tentukan perbandingan trigonometri pada sisi-sisi segitiga di atas A. ... SIMahasiswa/Alumni Universitas LampungJawaban..PembahasanDiketahui Segitiga siku-siku. Dengan gambar sebagai berikut Tentukan terlebih dahulu panjang sisi miring pada segitiga siku-suku ABC menggunakan Teorema Pythagoras seperti berikut Panjang sisi . Ingatlah bahwa Sehingga diperoleh Dengan demikian, .Diketahui Segitiga siku-siku. Dengan gambar sebagai berikut Tentukan terlebih dahulu panjang sisi miring pada segitiga siku-suku ABC menggunakan Teorema Pythagoras seperti berikut Panjang sisi . Ingatlah bahwa Sehingga diperoleh Dengan demikian, . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!509Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Top1: Luas Segitiga ABC AdalahCm²a.45 b.54 c.108 d.135 - Brainly. Top 1: Luas Segitiga ABC AdalahCm²a.45b.54c - Brainly. Jawaban yang benar adalah B. 54 Ingat bahwa luas segitiga (L) adalah (1/2) x alas x tinggi Ingat juga teorema Pythagoras menyatakan bahwa kuadrat panjang hipotenusa pada suatu segitiga siku-siku (salah satu sudutnya 90°) adalah sama dengan jumlah kuadrat PembahasanPerhatikan segitiga ACD. Dengan menggunakan teorema Pythagoras, maka berlaku Karena panjang sisi tidak mungkin bernilai negatif, maka AC = 12 cm. Diketahui ABC adalah segitiga siku-siku sama kaki, maka AB = BC. Misalkan AB = BC = x, maka berlaku Karena panjang sisi tidak mungkin bernilai negatif, maka x = AB = BC = cm. Perhatikan bahwa luas ABCD sama dengan luas segitiga ABC ditambah luas segitiga ACD, yaitu Dengan demikian, luas bangun ABCD adalah 90 . Jadi, jawaban yang tepat adalah segitiga ACD. Dengan menggunakan teorema Pythagoras, maka berlaku Karena panjang sisi tidak mungkin bernilai negatif, maka AC = 12 cm. Diketahui ABC adalah segitiga siku-siku sama kaki, maka AB = BC. Misalkan AB = BC = x, maka berlaku Karena panjang sisi tidak mungkin bernilai negatif, maka x = AB = BC = cm. Perhatikan bahwa luas ABCD sama dengan luas segitiga ABC ditambah luas segitiga ACD, yaitu Dengan demikian, luas bangun ABCD adalah 90 . Jadi, jawaban yang tepat adalah B.
Perhatikangambar segitiga siku-siku ABC di atas, Sudut A merupakan sudut siku-siku yang ukurannya adalah 90 0. c. Segitiga tumpul Segitiga yang salah satu sudutnya tumpul dimana salah satu sudutnya lebih dari 90 0 tetapi kurang dari 180 0 di sebut dengan segitiga tumpul.
Pada kesempatan kali ini kita akan membahas tentang segitiga, secara lengkap mulai dari pengertian segitiga, jenis – jenis, rumus keliling dan luas, hingga contoh soal dari segitiga. Simak pembahasannya IsiPengertian SegitigaJenis Jenis SegitigaJenis segitiga berdasarkan panjang sisinyaSegitiga sama sisiSegitiga sama kakiSegitiga semabarang Contoh GambarJenis Segitiga Berdasarkan Sudut-sudutnyaSegitiga LancipSegitiga TumpulSegitiga Siku-sikuContoh GambarRumus Keliling dan Luas SegitigaKeliling SegitigaLuas SegitigaContoh SoalPelajari Lebih LanjutApa itu segitiga ?Segitiga merupakan sebuah bangun datar yang dibatasi oleh tiga buah garis. Segitiga terbentuk dari tiga sisi yang berupa garis lurus dan memiliki tiga Jenis SegitigaJenis segitiga berdasarkan panjang sisinyaBerdasarkan panjang sisinya, segitiga dibagi menjadi 3 jenis yaitu Segitiga sama sisiSegitiga sama kaki adalah segitiga yang ketiga sisinya sama sama kakiSegitiga sama sisi adalah segitiga yang dua dari 3 sisinya itu sama semabarang Segitiga semabarang adalah segitiga yang tidak memiliki sisi yang sama GambarSegitiga sama sisiSegitiga sama kakiSegitiga Sembarang AB = BC = AC AB = AC AB ≠ BC, BC ≠ AC, AB ≠ ACJenis Segitiga Berdasarkan Sudut-sudutnyaBerdasarkan Sudut-sudutnya, segitiga dibagi menjadi 3 jenis yaitu Segitiga LancipSegitiga lancip adalah segitiga yang ketiga sudutnya kurang dari TumpulSegitiga Tumpul adalah segitiga yang salah satu sudutnya lebih dari Siku-sikuSegitiga Siku-siku adalah segitiga yang salah satu sudutnya sama dengan GambarRumus Keliling dan Luas SegitigaKeliling SegitigaKeliling segitiga dihitung dengan menjumlahkan panjang semua = sisi 1 + sisi 2 + sisi 3Luas SegitigaSedangkan luas segitiga merupakan setengah dari hasil kali alas dan tingginya. Dimana tinggi merupakan garis tegak lurus dari salah satu sisi ke titik sudut yang = ½ × alas × tinggi Contoh SoalBerikut adalah contoh soal segitiga beserta Soal 1Sebuah segitiga ABC memiliki panjang sisi masing-masing AB = 5cm, AC = 5cm, dan BC 6cm. Jika panjang garis tegak lurus dari titik sudut A ke sisi BC adalah 4cm, hitunglah luas dan keliling segitiga ABCPenyelesaianDiketahui Ditanya luas dan keliling segitiga ABC =…?Jawab L = ½ × alas × tinggiL = ½ × BC × tL = ½ × 6cm × 4cmL = 12cm2K = sisi 1 + sisi 2 + sisi 3K = 5cm + 5cm + 6cmK = 16cmJadi, segitiga ABC mempunyai luas 12cm2 dan keliling Soal 2Sebuah segitiga ABC siku-siku di B dan memiliki luas 30cm2. Jika panjang AB adalah 12cm dan panjang AC adalah 13cm. Hitunglah keliling segitiga ABCPenyelesaianDiketahui L = 30cm2Ditanya Keliling ABC ?Jawab K = AB + AC + BCMari cari nilai BC terlebih dahulu,L = ½ × AB × BC30cm2 = ½ × 12cm × BC30cm2 = 6cm × BCBC = 30cm2 ÷ 6cmBC = 5cmSetelah ketiga sisinya diketahui, kita bisa hitung kelilingnyaK = AB + AC + BCK = 12cm + 13cm + 5cmK = 30cmJadi Keliling segitiga ABC adalah 30cmPelajari Lebih LanjutSegitiga Siku – SikuSegitiga Sama KakiPythagorasPerbandingan TrigonometriRumus Sin Cos Tan
Sebuahbangun datar segitiga BAC dengan siku-siku di A memiliki panjang sisi AB 4cm BC 5cm dan. Perhatikan gambar segi tiga ABC siku-siku di B. Sebuah segitiga memiliki panjang sisi 12 cm 14 cm dan 17 cm. Perhatikan Gambar Di Bawah Ini. Segitiga abc sama kaki ac bc cd garis tinggi. Perhatikan Gambar Segitiga Abc Berikut Panjang Ac Adalah.